Cavitation-Induced Synthesis of Biogenic Molecules on Primordial Earth

نویسندگان

  • Natan-Haim Kalson
  • David Furman
  • Yehuda Zeiri
چکیده

Despite decades of research, how life began on Earth remains one of the most challenging scientific conundrums facing modern science. It is agreed that the first step was synthesis of organic compounds essential to obtain amino acids and their polymers. Several possible scenarios that could accomplish this step, using simple inorganic molecules, have been suggested and studied over the years. The present study examines, using atomistic reactive molecular dynamics simulations, the long-standing suggestion that natural cavitation in primordial oceans was a dominant mechanism of organic molecule synthesis. The simulations allow, for the first time, direct observation of the rich and complex sonochemistry occurring inside a collapsing bubble filled with water and dissolved gases of the early atmosphere. The simulation results suggest that dissolved CH4 is the most efficient carbon source to produce amino acids, while CO and CO2 lead to amino acid synthesis with lower yields. The efficiency of amino acid synthesis also depends on the nitrogen source used (i.e., N2, NH3) and on the presence of HCN. Moreover, cavitation may have contributed to the increase in concentration of NH3 in primordial oceans and to the production and liberation of molecular O2 into the early atmosphere. Overall, the picture that emerges from the simulations indicates that collapsing bubbles may have served as natural bioreactors in primordial oceans, producing the basic chemical ingredients required for the beginning of life.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stability and Properties of Mn+@ C26-2nBnNn(M= alkaline and earth alkaline metals; n=0, 3) Complexes for Synthesis Application

The structural and electronic properties of C24-2nBn Nn and M@ C24-2nBn Nn (M= alkaline and earth alkaline metals; n=3 and 6) molecules are studied using the Density Functional Theory (DFT). It was found that the most interaction is in M@ C24-2nBn Nn complexes (M=Be, Mg; n=3 and 6). The negative nucleus-independent chemical shifts confirm that C24-2nBn Nn (n=3 and 6) cages exhibit aromatic char...

متن کامل

Formation and stability of organic layers around inorganic particles in aqueous media: an introduction to origin of life

Formation of non bonded organic layer around inorganic particles like iron sulfide and zeolites, was hypothesized as starting point for one of the possible mechanisms of the origin of life on earth. In this study, the general circumstances needed for creation of such organic layer was investigated. An aliphatic hydrocarbon (hexane), an aromatic hydrocarbon (toluene), an alcohol (n-octanol) and ...

متن کامل

Investigation on Microstructure, Lattice and Structural Chemistry of Biogenic Silver Nanoparticles

   The use of plant extract in the biosynthesis of nanoparticles (NPs) can be an eco-friendly approach and have been suggested as a possible alternative to classic methods namely physical and chemical procedures. This study was designed to examine the structural chemistry of silver nanoparticles (AgNPs) using both conventional heating and microwave irradiation methods.To o...

متن کامل

Numerical Solution for Gate Induced Vibration Due to Under Flow Cavitation

Among the many force s to which hydraulic structures are exposed to, the forces induced by cavitation incident are of typical hydrodynamic unknown forces. The aim of this study is to define these forces as coupled fluid-structure interaction under two dynamic effects. The first dynamic effect which incorporates facilities for dealing with cavitation fluid is based on the appearance and bursting...

متن کامل

Biogenic Synthesis of Silver Nanoparticles Using Mustard and Its Characterization

The field of nanobiotechnology mainly encompasses with physics, biology, chemistry and material sciences and it develops novel therapeutic nano-scale materials for biomedical, drug delivery, cancer therapy and pharmaceutical applications. Silver nanoparticles (AgNPs) have unique physiochemical, biological and environmental properties which make them useful in a wide range of applications, s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017